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1 Introduction

A number of papers have explored the idea that the distribution of local optima can help to explain
both problem di�culty as well as the e↵ectiveness of inexact heuristics when searching instances
of the Traveling Salesman Problem (TSP). Most of these papers use a “macro-level” landscape
analysis. We present a “micro-level” analysis that counts the frequency of edges found in the
global optimum and how often these edges are sampled during search. This frequency analysis may
provide a better understanding of algorithm performance as well as problem di�culty.

Bose et al. [1] introduced the concept of the “Big Valley” distribution of local optima. The
definition of a local optimum depends on the choice of a local move operator. Briefly, for the TSP
the “Big Valley” hypothesis states that local optima that are closer to the global optimum in
evaluation are (subject to some variation) also closer to the global optimum in “bond distance”
(the number of shared edges). Hains et al. showed that a classic TSP, instance ATT532, displays
not only one large valley or “funnel,” but additional funnels, although these funnels were relatively
small [4]. Ochoa et al. [7] also documented a multi-funnel structure in TSP instances.

Landscape analysis might be very relevant to Stochastic Local Search methods such as Chained
LK and LKH. But it is less clear that it can explain the behavior of population based methods,
such as the EAX genetic algorithm [6]. This paper explores the idea that a micro-level analysis
can better explain the di�culty (or ease) of solving an instance of the TSP. This micro-level
analysis focuses on “edge frequency” across local optima induces by 2-opt. This analysis assumes
the global optimum is known, and then asks how often edges found in the global optimum are
sampled during search. This analysis shifts the focus from the level of local optima, to the level of
individual edges. By combining frequency statistics and structural constraints we not only better
explain why certain inexact methods work well, we can potentially discover better methods for
exploiting edge frequency information.

Recently, a new genetic algorithm was introduced for the Traveling Salesman Problem. The
Mixing Genetic Algorithm (MGA) uses Generalized Partition Crossover (GPX) [8]. What is novel
about MGA is that it generates both the best possible o↵spring that GPX can produce as well as
the worst possible o↵spring that GPX can produce. This is done such that no edges are lost during
recombination. Instead migration occurs within the population, so that good solutions recombine
with other good solutions, and poorer solutions are recombined with other poorer solutions. This
idea is related to Culberson’s “Gene Invariant” Genetic Algorithm (GIGA) [2].

To be successful, MGA (in it purest form) requires that all of the edges needed to find the
global optimum must be present in the initial population. In Table 1, we empirically ask how large
the initial population must be to ensure that all of the edges found in the global optimum are also
found in a population improved using 2-opt. For the 20 instances shown in Table 1, 16 of the 20
(80%) needed a population of only 256 individuals or less. The MGA was also able to solve most
of these problems to optimality using fewer recombinations than the EAX algorithm.

What this table does not indicate is how many of the edges in the initial population were also
edges found in the global optimum. We have examined all of instances in Table 1 and found that
for almost all problems approximately 70% of edges that occur in local optima are also edges found
in the global optimum. An example for TSP instance ATT532 is shown in Figure 1.

The illustrations in Figure 1 provide insight into problem di�culty. Overwhelmingly, the most
frequently sampled edges in the population are the edges in the global optimum. This is true for
both EAX and MGA. For example, edges that appear in 50% or more of the population make
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Table 1. List of problem instances and the corresponding smallest population size that has all the edges

found in the global optimum P* after performing EAX based 2-opt on the initial population.

Cluster Pop PCB Pop PCB Pop City Pop City Pop

Problem Size Problem Size Problem Size Problem Size Problem Size

C1k.0 256 pcb442 16 u1817 128 att532 64 vm1748 128

C3k.0 256 pcb1173 256 d2103 16384 pr1002 128 rl1889 128

C3k.1 512 fl1577 4096 u2319 64 vm1084 512 pr2392 128

dsj1000 128 d1655 256 pcb3038 128 rl1304 64 fnl4461 256

Fig. 1. The leftmost figure is a “heatmap.” Edges found in the global optimum are colored from yellow to

red; edges that are not found in the global optimum are colored black. Each row of the heatmap represents

one local optimum. The rightmost figure shows the frequency distribution of edges from the global optimum

(“Edge Global”) that also appear in the best 64 local optima out of the 512 that were initially sampled; it

also shows the frequency distribution of edges that do not appear in the global optimum (“Edge Other”).

Edges that appear in the global optimum appear with much higher frequency.

up more than 400 of the 532 edges that appear in the global optimum for instance att532, but
include only 60 edges that are not in the global optimum. More than 70% of the total edges in
the population are also found in the global optimum; however, more than 33% of all the unique
edges in the population are found in the global optimum (532 out of 1470). Similar results hold
for almost all problems in Table 1.

Our analyses suggest that population based methods that intelligently exploit edge frequency
information should have a clear advantage over local search methods that explore from a single
solution. While EAX and MGA use di↵erent recombination operators, both EAX and GPX are
exploring a very restricted space that is densely populated with (often all of) the edges that appear
in the global optimum. This may also help to explain the performance of Ant Colony Optimization
(ACO) [3]; the pheromone trails used by ACO are also frequency based. Finally, this micro-level
analysis could help to explain why some TSP instances are easier to solve to optimality than one
might expect given that the TSP is an NP-Hard optimization problem [5].
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1 Space-filling curve: A pattern driven algorithm

A space-filling curve (SFC) is an ordering function which creates a bijection between integers I
and points X lying in a D-dimensional regular grid. Let consider a point Xa 2 X = [0, 2n � 1]D,
the associate integer corresponds to Ia 2 I = [0, 2nD � 1] where n is the order of the curve.
This ordering has the property to conserve the distance, i.e. close points in the space have close
indices. This property known as the locality preserving. At this time, the Hilbert curve defined
by D. Hilbert [1] in 1891 achieve the best locality preserving level [2]. In various domain, many
applications are drawn on the locality preservation properties of space-filling curves. For example,
one could concern global optimization, data visualization, image compression and encryption.

Recently, G. Nguyen [3] proposed a new algorithm to compute SFCs where the curve at order
n = 1 is used to recursively define the bijection between the D-dimensional grid and the indices.
This new formulation is able to define any Hilbert like SFC, by using any pattern that respects
the adjacency rule: if Ia and Ib are separated by one unit then their associate points Xa and Xb

are separated by a unit distance. The well know Hilbert curve is defined by using the Reflected
binary gray code (RBG).

Using this new definition of SFC, relevant studies have been performed by P. Franco [4] to
investigate the influence of the pattern for the locality preserving level of the n order curve. The
results proved that it is possible to create comparable or better SFC than the regular Hilbert curve
which is considered, in the literature, as the best locality preserving curve.

In fact, finding patterns which have a high level of locality preservation level is equivalent to
find all Hamiltonian paths in a hypercube graph, which is NP-complete according to R. Karp [5]. A
hypercube graph in dimension D is defined by 2D nodes along with D 2D�1 edges, and each node
has a degree of D. Obviously, this problem can not be solved by regular graph traversal techniques
when D > 5. Moreover, our goal is not to find one unique pattern but a set of non-dominated
solutions according to the Faloutsos criteria [2] as

Fr(X) =
1

2D

X

k,l2[2D], k<l, d(k,l)r

max{d(Xk,Xl)}, (1)

where X is the set of points in the D-dimensional regular grid ordered by a SFC and d is the
Manhattan distance.

In the next section, di↵erent stochastic local search algorithms are briefly explained and results
of our experiments are discussed.

2 Stochastic local search algorithms for hamiltonian chain

In our work, genetic algorithms (GAs)[6, 7] are used to find hamiltonian chains. GAs use succes-
sively mutation/crossover and selection on a population of solutions to find the optima. In every
algorithm, the mutation operator is 2-opt defined by Georges A. Croes [8] and the crossover is
single point. The algorithms described in Table 1, are di↵erent in terms of selection and fitness
function. The distance of the chain is denoted by |C| and the Faloutsos criteria at radius ↵ by F↵.

In the elitist selection method “Top 100” the first hundred hamiltonian chain corresponding
at each generation to the hundred lowest fitness score are conserved to be the next generation.
Whereas “Non-dominated set” stands for the conservation over generations of the set of all non-
dominated solutions.
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Table 1. The di↵erent GAs used to find hamiltonian paths, according to |C| the length of a path and F↵,
the Faloutsos criteria.

Name Type Selection method Fitness Function
Classic Single-objective Top 100 |C|
Sum Single-objective Top 100 |C|2 +

P6

i=3
Fi

Multi Multi-objective Non-dominated set {F3.|C|, ..., F6.|C|}

According to Table 1, Each of them di↵ers in term of selection and fitness function. Classic
uses only |C| whereas Sum and Multi use the Faloutsos criteria F↵ (Equation 1). Multi is a multi-
objective GA version with a non-dominated set selection method.

For each algorithm the non-dominated set of the results of 1000 runs, for D = 5, is saved. Thus
three created fronts are compared, as proposed in [9], using the hypervolume (to be maximized)
and the additive epsilon (to be minimized) indicators.

For the hypervolume indicator, Multi is better with a score of 0.1254 compared to 0.1197 and
0.0772 for respectively Sum and Classic. The additive epsilon indicator point out the same perfor-
mances: Multi reached the first place with a score of 0.0625 whereas Sum and Classic respectively
obtained 0.0937 and 0.1875 scores.

The results are promising: Multi provided close sets to the exact known front, according to the
hypervolume and the additive epsilon indicators. Similarly, Sum reached comparable results which
would be consistent for further improvements. Indeed extended investigations will be ensure to
confirm the results on grids of higher dimension. Moreover, the non-dominated set found during this
study, on dimension D = 5, shows the non-optimality of the Hilbert curve pattern: the associated
Faloutsos scores are dominated by several other patterns.
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1 Extended Abstract

The field of optimization is focused by various research areas, such as operations research, evolu-
tionary computation as well as computer science and mathematics in general. A variety of di↵erent
strategies to tackle such problems have emerged in the last decades. These approaches range from
methods specifically designed for a single problem, to local search methods, and so-called general-
purpose algorithms such as meta-heuristics, memetic algorithms, and hyper-heuristics. The intrinsic
nature of all these algorithms is that they usually expose a variety of di↵erent parameters which
one can tamper with. Adherent to the NFL-theorem, no single algorithm is superior to all other
algorithms without a proper adjustment of parameters, rendering the choice of suitable parameters
a meaningful endeavour; this circumstance is known as the algorithm configuration problem.

This work proposes an approach, capable of configuring a modularized version of the most
prominent meta-heuristic for single-objective continuous optimization, i.e., the Covariance Matrix
Adaption Evolution Strategy (CMA-ES) [7]. Merits of this modular framework especially lie in
its flexibility and timeliness. While it is based on the original CMA-ES (introduced by [1]), it
also encompasses advances made in recent years. In other words, instead of using, for example,
the conventional sampling strategy, the modular framework o↵ers several other options such as
‘mirrored sampling’, ‘orthogonal sampling’, and ‘quasi-random sampling’. These di↵erent options
concerning a single component of the CMA-ES are named as so-called modules. In total, this
framework comprises eleven modules which can be combined without any constraints. Whereas
nine modules o↵er binary options (either ‘active’ or ‘inactive’), the remaining two allow trinary
parameter values. This results in 29 · 32 = 4608 di↵erent configurations. A full account of modules
and their purposes is given in [7].

To evaluate the competitiveness of certain modules in general and specific configurations in
particular, the modular CMA-ES framework with all candidate configurations is applied to a set of
di↵erent problem instances. These problem instances are provided by the Black-Box Optimization
Benchmark (BBOB) [2], where 480 di↵erent, complementary problem instances (of in total 24
functions) are selected from. This results in a dataset (called here performance features) comprising
the Expected Runtime (ERT) for each configuration related to each problem instance. Whereas the
performance di↵erences between configurations for some problems are not particularly large, on
others they are indeed. Furthermore, when only considering the best configuration per problem
instance, not solely a small subset of distinct configurations remains but rather still around 400.
Thus, identifying the optimal configuration of the modular CMA-ES framework can be considered
crucial and auspicious.

The devised configuration approach of this work strives to find the optimal configuration for a
given problem instance prior to optimization and therefore can be classified as o✏ine per-instance
configuration. Hence, it is not surprising that such an intelligent automated configuration pro-
cedure requires quantifiable and cheap information characterizing the problem instance a priori.
Ideally, this information is provided automatically without requiring the involvement of domain
experts. This is commonly referred to as Exploratory Landscape Analysis (ELA) [5] in the domain
of continuous single-objective black-box optimization. These ELA features, based on a small ini-
tial sample of the search and objective space, o↵er insights into various properties of a problem
instance, e.g. the degree of multi-modality, variable scaling, and global structure. Their relevance
and usefulness has been validated in several works, e.g. [3].

The related performance and ELA features are pre-processed, resulting in a dataset which only
consists of the single best configuration for each problem instance and thereby serves as training
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data for the upcoming machine learning inquiry. Several methods of constructing algorithm selec-
tors are discussed in [4]. Some of the derived insights can be transferred to this work concerning
automated algorithm configuration; especially, the choice of establishing a ‘classification’ or ‘re-
gression’ task. In context of a classification scenario, each possible configuration out of the 4 608
resembles its own class. Considering the disparity between possible classes to predict (4 608) and
the number of training samples (480), the prerequisites of such a multi-class classification scenario
are not met.

A more promising and straightforward approach is to predict whether a module should be
‘active’ or ‘inactive’ given certain ELA features. This transforms the multi-class classification with
over four thousand classes into a multi-label classification scenario. In other words, when predicting
the optimal configuration for a given problem instance, a multi-label classification model predicts
the option values for each of the eleven modules, e.g. ‘active’ for the first module, ‘inactive’ for the
second, and so forth. The implemented multi-label classifier builds upon the work of [6] introducing
Classifier Chains (CC). The constructed CC is constituted of a set of ‘base’ classifiers (here random
forests), where each of these base classifiers is responsible for exactly one specific CMA-ES module.
Yet, instead of being independent from each other, each base classifier takes the output of all
previous classifiers (as well as the ELA features) into consideration. This enables the CC to capture
interactions between modules. Therefore, the order of these base classifiers is crucial for the CC’s
performance.

The resulting CC is able to close the performance gap – between the single best configuration
for all problem instances and a hypothetical situation where always the best configuration is chosen
for each problem instance – by over 80% (which also encompasses the additional costs imposed
by the calculation of the ELA features). However, it should be noted that the full potential of
the approach has not been exhausted yet. Rather, the current state serves as a proof-of concept
for further endeavours in that direction. At the time of writing, the high performance cluster of
the University of Muenster is utilized to evaluate several techniques regarding feature and model
selection of base classifiers as well as hyper-parameter tuning of the base classifiers considered. It
is expected that this inquiry yields even better results. Moreover, the scenario will be alternatively
treated as a regression rather than a classification problem, where CMA-ES performance of all
configurations for a given problem instance is predicted allowing for finally selecting the most
promising configuration.

The interested reader might argue that the presented undertaking so far does not truly resem-
ble an algorithm configuration task but rather an algorithm selection e↵ort with 4 608 di↵erent
distinct algorithms. Whether one considers this problem as one of the former or latter is a topic
of debate. Certainly, the configuration space of the modular CMA-ES framework is significantly
smaller than in other algorithm configuration scenarios. Simultaneously, this modular CMA-ES
framework comprises many more ‘algorithms’ than commonly considered in algorithm selection
inquiries. Essentially, it opens up the question what constitutes and limits an algorithm.
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1. Context and Motivations

In this extended abstract, we discuss optimized operations of supply chains dealing with multiple items.
Examples of such supply chains are omni-channel retailers, supermarkets and service supply chains,
etc. Whenever more than one item is ordered from one supplier or they share the same transportation
vehicle, first order interactions take place between the items. First order interaction can be due to a joint
(common) fixed cost in addition to individual fixed costs. When the demands are known with certainty
the problem is a deterministic Joint Replenishment Problem (JRP). On the other hand, if the demands
are considered stochastic, it is called the stochastic joint replenishment problem. Other costs involved
are the inventory holding costs and the shortage costs.

The periodic deterministic JRP is strongly NP-hard for infinite horizon and NP-hard for finite horizon
(Cohen-Hillel and Yedidsion, 2018). No such proof is available yet for the stochastic JRP. However, it is
commonly regarded as very hard due to its huge solution space. Structural results for the stochastic JRP
show that the optimal solution cannot be expressed as a simple replenishment policy even for the two-
item case (Ignall, 1969). Therefore, many authors have assumed some simple structures such as (s, c, S)
(Johansen and Melchiors, 2003), (s, c, d, S) (Feng et al., 2015) and Periodic Review(s, S) (Viswanathan,
1997), to facilitate practical implementation (S = Order up to level; s = Reorder level; c, d = Can order

levels). Even if the adopted method follows one of the above policies, any change in problem parameters
requires re-evaluation of policy parameters. Such a process is also time consuming.

The real-world applications of stochastic JRP are numerous. Usually, for the stochastic JRP, replen-
ishment planning solutions use heuristics that are independent for each item under the JRP or follow one
of the joint policies mentioned in the previous paragraph. These methods are not optimal for the global
problem. Since the stochastic JRP are very hard to solve optimally, we propose to use a stochastic local
search (SLS) approach to find good quality solutions in reasonable time. The ordering decisions are then
implemented under a rolling horizon planning environment. The quality of a solution obtained using our
proposed methodology is always better than what can be obtained using item level heuristics because, it
uses the item level heuristics for generating the initial solution and then conducts further improvements.
We also conduct numerical studies to attest its performance against the joint policies.

2. Methodology

In contrast to the general assumption in the literature, non-stationary demand is encountered widely
during application. Hence, our methodology follows a dynamic ordering strategy, i.e. orders are calculated
during each ordering epoch. We first generate the initial solutions using different heuristics that are
independent for each item then, use an iterated local search for further improvement. The details are
explained in the following sections.

2.1. Representation of the Solution
The stochastic JRP is a multi-period inventory optimization problem involving multiple items. At the
beginning of each review period (ordering epoch), the inventory levels of all items are recorded and
order quantities for all items are decided. Under dynamic ordering strategy, the optimal order quantities
during an ordering epoch can be expressed as a vector Q, where each element of the vector corresponds

1



to the order quantity of the respective item. The order quantities can only take zero or positive integer
values. Therefore, a solution of the stochastic JRP is a set of dynamically decided multi-item orders. It
is optimal if it minimizes the total expected cost over a period for non-stationary demand or it minimizes

the expected cost per period for stationary demand. Our proposed methodology is applicable in the cases
of both stationary and non-stationary demands. The proposed SLS approach is presented next.

2.2. Proposed SLS Approach
Steps of an iterated local search (ILS) for the stochastic JRP

1. Initialization – The proposed iterated local search uses either of the two following initializations:
Random initial solution and initial solution obtained with a combination of single item heuristics.

2. Neighborhood – The second step involves a local search that uses three neighborhood operators:
Positive/negative increment to one element, k-exchange and synchronized neighborhood operator
(discussed later).

3. Perturbation – Multiple applications of the neighborhood operator to one or more randomly selected
element(s).

The application of a neighborhood operator to a solution affects the order quantities for different items.
The fitness of the new solution can be computed incrementally, and therefore is not time consuming. The
performance of the above ILS approach depends significantly on the underlying neighborhood relation,
and specifically, on the size of the neighborhood. For the stochastic JRP with N items, the size of
the neighborhood for a k-exchange operator is in O(Nk), and for the simple increment/decrement (for
example +1/-1) the number of neighbors is 2N .

Synchronized Neighborhood Operator (SNO)

The idea behind SNO is derived from the analysis of structural properties of near optimal solutions for
the stochastic JRP. It is observed that the near optimal solutions tend to generate orders for a group of
items during each ordering epoch. Under stochastic environment it is impossible to determine the exact
time until which the inventories would last. However, the property of a near-optimal solution is to always
ensure that the inventories for a maximum number of items last until equivalent times. In other words
items are ordered in groups to reduced the share of joint ordering cost, and in such a way that they are
also ordered in group in the future.

The SNO works on the above principle. For N items there are at least qNmin possible solutions, where
qmin is the minimum of all possible number of orders for different items. The SNO provides a set of
neighbors where a group of items has non-zero orders and the order quantities are synchronous to ensure
that the next order is also grouped. Therefore, it eliminates the unnecessary searches in sub-optimal
solution space.

2.3. Results
Preliminary results suggest further improvement of 2-7% over the best available joint policies in the
literature for the two-item problem. More elaborate results will be presented during the workshop.
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Metaheuristics and, in particular, Stochastic Local Search, SLS, methods such as Iter-
ated Local Search (ILS), Iterated Greedy (IG), Tabu Search (TS), GRASP or Simulated
Annealing (SA) have been used with good results for many NP-hard optimization prob-
lems. Typically, when tackling such problems, an algorithm designer has to decide which
one of these methods to apply and how to adapt the chosen metaheuristic to the problem.
So far, this process has been carried out manually using a trial and error approach that
requires time and an expert designer in order to achieve good results.

An alternative to the manual algorithm engineering is the automated design of e↵ec-
tive SLS algorithms through building flexible algorithm frameworks and using automatic
algorithm configuration techniques to instantiate high-performing algorithms.

The concept of automatic algorithm design can be traced back to the introduction of
automatic configuration tools and unified algorithm implementations. The former simplifies
the configuration of algorithms with a big parameter set, while, the latter expose the
design choices, when building a SLS, as parameters. By using the two together, we can
automatize the design of specific SLS in a process called programming by optimization.
We propose a way to adapt these ideas towards generating high-performing algorithms for
important scheduling problems. The method is based on decomposing the SLS algorithms
to components and to define a set of rules to describe how to combine them. Finally, an
automatic configurator is used to find the best combination of components that satisfies the
given rules. The presented system can choose either to instantiate an existing SLS method
or to create a new one by hybridizing two, or more, SLS algorithms. More specifically,
the automatic configurator is used to select the best components, the rules are expressed
as a grammar, and a new framework, called EMILI, has been created to implement the
components and to instantiate the algorithms.

EMILI has been designed to be an unified framework for the automatic SLS design.
EMILI is based on (i) a decomposition of SLS algorithms into algorithmic components, (ii)
an algorithm template from which many di↵erent types of SLS methods can be instantiated,
(iii) a recursive definition of possible algorithm compositions that in turn allow to generate
hybrid algorithms, and (iv) a strict separation between algorithm-related components and

1



problem related components. EMILI is a significant refinement over previous proposals in
terms of ease of implementation and algorithm composition, the comprehensiveness of the
implemented components, and the possibility of tackling problem classes rather than single
optimization problems.
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Abstract. This paper proposes fast and smart evolutionary algorithm to solve large scaled
industrial multi-objective optimization problems (MOPs) with high accuracy in continuous
search space.

1 Introduction

The main problem of many industrial systems is an impossibility to determine their optimal char-
acteristics of components by analytical methods and real-life experimental tests due to their high
cost and complexity. A possible approach is to appay multi-objective evolutionary algorithms
(MOEAs). Many existing state-of-the-art MOEAs do not satisfy necessary requirements (runtime
(RT), accuracy) for resolving such kind of problems. Proposed MOEA provides high accuracy in
short RT due to its low complexity and needs small number of estimations of function evaluations
in order to approximate the set of Pareto optimal solutions.

2 Proposed approach

Inspired by an archive-based MOEA ASREA [1], the proposed algorithm, called FastEMO, has
low complexity O(man) (where m is the number of objectives, a is the size of archive, n is the
population size). As ASREA, FastEMO reduces the overall RT due to computation of a small
Pareto Front, limited to the size of the archive. The optimal archive size is fixed as 15m. Unlike
ASREA, FastEMO has a much simpler architecture and suggests :

– Elitist archive update strategy, which retains only non-dominated solutions of a current gen-
eration to the next generation ;

– New adaptive crossover operator, which ensures continuously-increasing accuracy during gen-
erations. It is based on properties of BLX-↵�� [2] and Arithmetic crossovers [3]. For adaptive
control of parameter values for di↵erent generations, we propose a dynamic function, which
exploits a number of the current generation and a number of non-dominated solutions in the
previous population ;

– Self-adaptive Gaussian mutation one-step mechanism, which works e�ciently on a large di-
mensional space and is described here [4] ;

– Increase of archive size to o↵spring population size on the last generation, in order to obtain
more non-dominated solutions and to raise accuracy.

3 Experiments

Set of experiments are conducted to investigate the performance of FastEMO. During these exper-
iments were used following resources :

– MOEAs for comparative study versus FastEMO : MOEA-D, NSGA2, NSGA3, IBEA, ASREA
and CDAS ;
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– Performance metrics of diversity and convergence : Hypervolume (HV) and Inverted Genera-
tional Distance (IGD) ;

– Benchmark suites (2/3-objective) : ZDT, DTLZ, WFG, UF, BBOB-biobj 2018 COCO (Com-
paring Continuous Optimizers)[5].

In order to estimate performance in BBOB COCO tests the following method is used : the central
performance measure is the RT in terms of the number of evaluations conducted on a given problem
until a given target value is hit (HV). For other benchmarks suites, total CPU time execution for
given number of generations and mean value of RT per one generation is used. Evaluation of the
test results was also carried out by analysing graphs of Pareto fronts.

Results of comparative experiments of FastEMO on fifty-five BBOB-biobj functions (with the
search space dimension = 40) versus the referenced algorithm (RA) in COCO platform are shown
in Table 1.

Table 1. Results of comparative experiments on fifty-five BBOB-biobj functions

Number of results Precision
1e� 01 1e� 03 1e� 05

Positive 48 43 53
Negative 7 12 2

Results of comparative experiments of FasteEMO on ZDT, DTLZ, WFG, UF tests (31 functions,
1000 individuals, 500 generations) versus MOEAD-D, NSGA2, NSGA3, IBEA, ASREA, CDAS are
shown Table 2.

Table 2. Results of comparative experiments on ZDT, DTLZ, WFG, UF(thirty-one functions)

Number of results CPU RT HV IGD

Positive 31 28 29
Negative 0 3 2

4 Conclusion

According to experimental results, FastEMO has advantages over mainstream state-of-the-art al-
gorithms in values of performance metrics and in CPU RT. Also FastEMO shows better values of
RT and HV precision versus RA of COCO on the separable, moderate and illconditions functions
on high search space dimension. During analyse of properties of the algorithm it was revealed, that
with fixed number of evaluations and with an increase of the population size, values of performance
metrics are improving with a slight increase of CPU RT due to properties of FastEMO: low com-
plexity, simplified architecture and e�ciency of genetic operators. By these properties, FastEMO
can be easily implemented on GPU.
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1 Introduction

In this paper, we propose an automatic algorithm configuration (AAC). It can manage many

parameters and an online method produces a deterministic algorithm which parameters modified

during execution. We explore the benefits of both methods by proposing a dynamic framework

that switches between di↵erent configurations during execution and adapted AAC protocol. We

define a control mechanism for parameters as a combination of three questions [1]: what is to be

controlled, how the control is performed, and when the parameter is changed? Our method is tested

on single-objective permutation scheduling flowshop problem with an automatic configuration of

a dynamic hill-climbing.

2 Automatic Algorithm Configuration of Dynamic Framework

Our contribution is to propose a new method to parameterize a dynamic algorithm. To describe

what is called a dynamic framework, C. Pageau et al. [2] propose using parameter configuration

that changes at predetermined times, as show in figure 1. We will propose more flexibility on

the execution times for each configuration. This concept enables the use of AAC instead of the

parameter control mechanisms.

Fig. 1: Example of two configuration schedules [2]

In this paper, the automatic configuration can fix the duration of each time split (si) in the list

{10, 25, 50, 75, 90} and each time split is calculated as follows. T1 is equal to (T ⇥ s1)/100, T2 is

equal to ((T �T1)⇥ s2)/100, Ti is equal to ((T �
P

(Ti�Ti�1))⇥ si)/100, and Tk is the remaining

budget where T is the time budget.

3 Experiments and Conclusion

We investigated the proposed method to solve the single-objective permutation flowshop scheduling

problem. We use Irace [3] to implement the AAC and to find the configuration of hill-climbing [4]

and its components (exploration neighborhood, operation neighborhood, neighborhood order, and

perturbation) best adapted to the instances of the problem to solve. We use the Taillard instances

[5], we use di↵erent instance of N jobs, M machines: 20⇥5, 20⇥10, 20⇥20, 50⇥5, 50⇥10, 50⇥20,

100⇥5, 100⇥10, 100⇥20, 200⇥10, and 200⇥20. For each size, 10 instances are used.

In this paper, two dynamic framework parameters have been implemented: K as the number

of time splits and {T1, T2, . . . , TK} the associated time budget. 3 time budget configurations are
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possible, corresponding to the di↵erent time splits {T}, {T1, T2} and {T1, T2, T3}. 24 configurations

for our algorithm are present per time split. We test 3 scenarios in which K is equal to 1, 2 or 3.

Since |s| = |{10,25,50,75,90}| = 5, the number of time configurations possible are 1, 5 and 25 for

K = 1, 2 and 3 respectively. If K = 1, then there are 24 di↵erent configurations, K = 2 includes

approximately 2.9⇥10
3
di↵erent configurations (24+5⇥24

2
) and, K = 3 a total of approximately

3.5 ⇥ 10
5
di↵erent configurations (24 + 5 ⇥ 24

2
+ 25 ⇥ 24

3
). We set to N2⇥M milliseconds, the

stopping criterion of the algorithm.

(a) all instances (b) without and with control

(c) without parameter control (d) with parameter control

Fig. 2: Instances 100 jobs and 20 machines. C-with control, WC-without control,S1 = all instances, S2�4-
subset of instances, A1�4-specific parameter configuration. Smaller values are better.

For the comparison between with control and without control, the experiments presented in figure

2 (a)(b) show that the value of control. Moreover, the experiments presented in (c)(d) show that

it is more interesting without control to learn from all instances while with control performance is

better with learning on instances of the same size. We hypothesize that parameter control makes

the algorithm better adapted to the local properties of the instance.
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1 Introduction

This work aims to obtain insights to conceive local search algorithms. We focus on establishing
links between optimization problem structure and e�ciency of local searches rather than tackling
and optimizing a specific problem.

More precisely, we present and focus on partial neighborhood local search algorithms, simple
solution-based local searches which explore a sample of the neighborhood at each step of the
search. In our experiments, we perform a parameter sensitivity analysis on partial neighborhood
local searches and compare them to state-of-the-art local searches on several types of binary and
permutation fitness landscapes.

Fitness landscapes, first introduced by Wright [2] in the field of theoretical biology, are used in
various fields to apprehend the behavior of complex systems better. In particular, in evolutionary
computation, the study of combinatorial and continuous search spaces through fitness landscapes
analysis helps to understand and predict the behavior of evolutionary algorithms. Such a model can
help to observe di�culties induced by a given problem when tackled with an optimization method.
Focusing on such landscapes facilitates the extraction of links between their properties and search
algorithms behavior. Our experimental analysis highlights some links between ruggedness and both
overall e�ciency of considered methods as well as parameter sensitivity of partial neighborhood
local searches.

2 Sampled Walk

The key concept of Sampled Walk (SW) is to ignore if a move improves or not the current fitness
value while maintaining a selection pressure. SW is a local search based on randomly sampled
neighborhoods. At each step of the search, SW evaluates �SW random neighbors of the current
solution and selects the one with the highest fitness value. Except �SW, the only conceptual choice
to make concerns the stopping criterion. �SW = 1 corresponds to a random walk whereas �SW = N
(N being the neighborhood size) corresponds to a tabu search mechanism with an empty tabu list.

Due to the extreme simplicity of SW, its implementation is easy and does not require many
design choices which depend upon the considered neighborhood function. Moreover, SW simplicity
greatly facilitates its analysis and allows many specific advanced variants. Note that SW, which is
defined in a local search context, can also be viewed as a (1,�) evolution strategy (with � = �SW).

ID-Walk (Intensification/Diversification Walk) [1] is based upon a similar concept. Like SW,
ID-Walk can be considered as a partial neighborhood search since it consists of evaluating (at most)
�ID solutions at each step of the search. However, ID-Walk selects the first encountered improving
neighbor and therefore considers the fitness of the current solution to select the move to apply.
When no improving solution is found among the �ID neighbors, the selected one depends upon
the considered variant. IDbest selects the best one among the �ID deteriorating neighbors, whereas
IDany randomly selects one of them.

It is obvious that these partial neighborhood local searches (SW, IDbest, IDany), which use
randomly generated subneighborhoods, leads to similar behaviors. As stated by Neveu et al. [1],
ID-Walk was proposed to combine intensification and diversification during the search process.
Although SW follows the same principle, it emphasizes that the sign of the fitness variation does
not determine explicitly the diversification aspect brought by the partial neighborhood. Moreover,
SW does not consider the fitness of the current solution for the selection process. The experiments in
the next section investigate empirically SW, and determine if it can be e�cient on various landscapes.
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3 Analysis on Fitness Landscapes

In order to accurately assess the capacity of partial neighborhood local searches to lead toward good
quality solutions, we compared the three variants SW, IDbest and IDany to two widely-used local
searches: tabu search (TS) and iterated local search (ILS). Like SW, the classic tabu search does
not use the current fitness for the selection process, but considers almost the whole neighborhood
at each step of the search. ILS separates intensification and diversification phases. We choose
here to use the first-improvement strategy during hill-climbing (intensification) phases, as first-
improvement regularly reaches better local optima than best-improvement on landscapes di�cult
to climb.

ILS, TS, IDbest, IDany and SW require to set two parameters: a stopping criterion and their
respective aforementioned parameter. For each method, we performed runs using several parameter
values in order to establish appropriate settings. In our experiments, we consider four types of
fitness landscapes: NK landscapes, UBQP landscapes, QAP landscapes, and FSP landscapes. The
two first types use binary string solution representation, whereas the two lasts use permutations.

First, a parameter sensitivity analysis coupled with landscape analysis shows that best �SW
values correspond to a portion of the whole neighborhood varying from 3% and 15% of its size.
These values tend to be higher on highly rugged landscapes and tends to be smaller for large
instances. Moreover, this size slightly increases when the maximal number of evaluations is greater.

A comparative analysis of the results shows in most cases that on the considered NK landscapes,
the sampled walk SW leads toward best solutions on average. SW e�ciency does not seem to be
a↵ected by the ruggedness of the landscapes. On every considered landscape, results obtained by
ID-Walk are very close to those obtained by SW, but SW often statistically dominates on large
landscapes.

On UBQP landscapes, results di↵er from those obtained on NK landscapes. On large UBQP
landscapes, the tabu search often leads toward the best average fitness values. This fact might
be resulting from a particular structure of these landscapes. Considering NK landscapes, analo-
gies between the evolution of ruggedness indicators indicate that such landscapes have a uniform
ruggedness repartition. On the contrary, it appears that UBQP landscapes have a less uniform
ruggedness repartition, which we can described as a local ruggedness and a global smoothness.
This specificity could also explain why smaller UBQP instances are easy to solve by local search
as long as some diversification is applied.

On permutation problems (QAP and FSP), SW and IDbest outperform other variants and are
often statistically not comparable.

4 Conclusion

We have investigated partial neighborhood local searches and, more particularly, the sampled
walk algorithm which can be viewed as a local search transposition of a (1,�)-ES. We show that
the sampled walk is e�cient to tackle standard binary and permutation landscapes. Conducted
experiments on NK landscapes highlighted the fact that the sampled walk behavioral parameter
can be principally set according to the landscape ruggedness. Experiments also show that such
a method is globally competitive in comparison to metaheuristics like tabu search and iterated
local search. Even if a tabu search outperforms the sampled walk on UBQP, we can establish links
between respective e�ciency of methods and ruggedness repartition thanks to the k-ruggedness
indicator.

This family of local searches based on a random sampling of the neighborhood are not deeply
investigated in the metaheuristics literature despite their simplicity. There are thus many ways to
use the sampled walk principle and to improve its e�ciency, for instance, by adapting its parameter
during the search according to landscapes features.
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1 Introduction

In this paper, we address a recent variant of the Team Orienteering Problem (TOP) where
additional constraints, namely time windows and synchronized visits, are considered. This
variant has been initially proposed in the context of planning protection tasks of a number of
strategic assets (buildings, facilities, bridges, etc.) endangered by wildfire progression. This
problem is modeled using a fleet of heterogeneous vehicles used to visit the set of assets. Each
asset is associated with a time window representing fire fronts progression. An asset is also
assigned a service time duration which models the time necessary to perform the protection
activities. Finally, each asset has a resource requirements which are expressed by the number
and type of vehicles required. Due to these constraints, protecting all the assets might be
impossible. Hence, a value called profit is associated with each asset in order to distinguish
between di↵erent assets according to their relative importance. In order to gain the profit
of a given asset, it must be visited by the required vehicles in a synchronized manner,
i.e. the visits should be simultaneously performed by the vehicles within the corresponding
time window. As a result, the objective function aims at maximizing the amount of profit
collected. We call this problem the Synchronized Team Orienteering Problem with Time
Windows (STOPTW).
The STOPTW was first proposed in [1] under the name of Asset Protection Problem Dur-
ing Escaped Wildfire. The authors introduced a mixed integer programming model for the
problem which was demonstrated on a realistic wildfire scenario in Tasmania. The authors
in [2] proposed an Adaptive Large Neighborhood Search Heuristic (ALNS) for the problem
along with a new set of benchmark instances.
To solve this problem, we propose in this paper an e↵ective hybrid heuristic. Our method
combines between local search heuristics and a set cover formulation in order to achieve
higher performance. Experimental results conducted on benchmark instances [2] have shown
that our method outperforms the ALNS in terms of both, solution quality and computational
times.

2 Contribution

We propose in this paper an iterative heuristic to solve the STOPTW. This heuristic is
composed of three major components.
The first component is an Adaptive Iterated Local Search (A-ILS) with an embedded De-
structive/ Constructive local search. The construction phase is performed by using a candidate-
list based insertion heuristic, whereas the destruction phase is carried out by an adaptive
removal operator. The ordering of assets in the candidate list is calculated based on a specific
criteria that takes into account the width of time windows, the number of vehicles and the
profit. In addition, these factors are weighted using three parameters generated randomly
during the search progress and used to calculate a new candidate list after each iteration.
This feature allows the heuristic to cover a larger part of the search space.
Solutions produced by the A-ILS are improved by the second component that acts as an
Improvement Procedure (IP). The IP invokes several e�cient local search operators adapted
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to the case of STOPTW. Four operators have been developed: relocate, 2-opt*, exchange as
well as the insertion operator described earlier. Although relocate and 2-opt* operators do
not increase the total profit, they are used to reduce the distance/ time of the solution and
hence, provide eventual opportunity to the other operators to improve the solution quality.
The two previous components generate throughout the solving process a set of good solutions
which are saved in a pool. The third component of the heuristic is a Route Recombination
(RR) procedure. It aims at finding the best combination of routes that maximizes the total
objective value. This is achieved using a set covering formulation solved on the pool of routes.
The solution obtained by RR is further improved by applying the local search operators of
the IP component.

3 Experimentation and results

Computational tests have been carried out on 240 instances generated by Roozbeh et al.
(2018) in [2]. We compared the proposed heuristic with the ALNS presented in [2]. Benchmark
instances are all composed of 200 vertices in addition to the depot, and each instance was
used to derive an additional instance of medium size by truncating the first 100 vertices.
We followed the same protocol used in [2] to evaluate the ALNS, that is, ten runs for each
instance, and we recorded the best solution as well as the average objective value.
Table 1 depicts the results of our method compared to ALNS. It reports computational
times (CPU) in seconds, the best (Best) and the average run (AV G), both represented by
the percentage of protected assets, and finally, the improvement achieved by our method
compared to ALNS (GAP ).

Table 1. Comparison with the literature

Nb. Assets
ALNS Our method

CPU(s) Best (%) AVG (%) CPU(s) Best (%) AVG(%) GAP(%)

100 141.66 68.03 66.37 49.22 76.47 75.18 �12.41

200 578.93 64.04 62.68 176.36 74.40 73.80 �16.18

Regarding instances with 100 assets, our method succeeded to achieve substantial improve-
ment compared to ALNS. Computational times were divided by a factor of 2.9, decreasing
from 141.66s for ALNS to only 49.22s. The overall percentage of protected assets also was
substantially improved, rising from 68.03% to 76.47%, yielding an overall improvement gap
of �10.41%. In the case of 200 assets, overall computational time achieved by our method
are 3.3 times faster than that of ALNS, with 176.36s against 578.93s. The overall percentage
of saved assets was also improved which attains 74.40% against 64.04% realized by ALNS,
yielding an improvement gap of �16.18%.
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1 Seeking for alternative fitness functions

Given an optimization problem defined by an objective function fobj : X ! R on a search space
X the purpose of Local Search (LS) algorithms [2] is to find a solution x 2 X maximizing (or
minimizing) the objective value. LS algorithms guide the search by means of a neighborhood
relation, a fitness function and a move strategy. The design of an e�cient algorithm often focuses
on the move strategy, given a natural neighborhood relation and the objective function fobj as
fitness function—that is, from a fitness landscape directly derived from the problem.

Among the most basic move strategies, the (first improvement) hill climber randomly selects
improving neighbors until a local optimum is reached. The di�culty for an fobj-based climber to
find good solutions (and in particular the global optimum) is obviously correlated with the number
of local optima induced by fobj and the neighborhood relation. Improving such algorithm to reach
better solutions usually involves to refine the move strategy with diversification techniques.

On the contrary, we propose here to modify the fitness function so that a simple climber can
achieve better solutions. Our aim is more precisely to iteratively improve the LS algorithm by
changing the fitness landscape through mutations on the fitness function, while keeping unchanged
the neighborhood relation and the move strategy.

Indeed, once the LS process has been set, there exist better fitness functions than fobj to reach
more e�ciently the global optimum, ie. fitness function whose associated fitness landscape is easier
to climb from a random starting solution [1]. For instance, an optimal fitness function fopt could
be fopt(x) = �d(x, xopt), where d(·, ·) is a distance and xopt the global optimum. Of course, finding
an optimal fitness function is equally di�cult that finding the global optimum, but we investigate
in this paper to find better hill climbers than a climber guided by means of fobj. We propose here
a search process (in the space of fitness functions) which consists to improve fitness functions and
thus hill climbers (operating in the original search space). The aim is to determine an alternative
climber LS(falt) that globally reaches better solutions (evaluated w.r.t. fobj) than the natural
climber LS(fobj).

2 Local search algorithm and preliminary experiments

Algorithm 1 presents the general strategy. An initial alternative fitness function falt is randomly
generated and then evolves by means of a mutation operator, describing a local search process
(first improvement hill climbing). Moreover, the fitness function evaluation stage consists itself of
iterating first improvement hill climbers for collecting local optima (w.r.t. falt). These solutions
are then evaluated by using the objective function fobj. Climbers using current and neighboring
(muted) functions are compared by means of a Mann–Whitney U test. A muted function is selected
when the corresponding hill climbing algorithm statistically outperforms the current one.

In this work we use NK landscapes [3] as binary combinatorial optimization problems to get
a proof of concept. As first experiments we choose NK functions both as objective functions and
as alternative fitness functions. The aim is then to determine an NK function able to climb the
landscape at least as e�ciently as the original one. A NK landscape mutation is obtained by
randomly modifying variable dependencies and/or fitness contributions.

Let us precise that we do not currently focus on the computational cost of such a strategy, but
we rather validate the concept of navigating through the search space by following the adaptive
paths of an alternative landscape, itself constructed in an adaptive way. One can observe that this
evolutionary process is able to build a fitness function which is as equally adapted or even more
that the original fitness functions. This proof of concept will serve as a basis for future work about
the adaptive construction of local search algorithms.
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Algorithm 1 Fitness function evolution
Parameters: a fitness function model (M), a mutation parameter (⇣), a solution space (⌦), a neigh-

borhood function (N ), a statistical test (T ), a statistical significance threshold (zmin), the number of

local optima hill-climbing runs for evaluate fitness functions (p), the maximum number of consecutive

non-improving mutations (maxmut).

Input: an objective function fobj.
Output: an alternative fitness function falt.

1: falt  initializeM()

2: repeat

3: for j  1 to p do

4: randomly select s 2 ⌦
5: Sj  hill climbing(⌦,N ,falt)

(s) � S is a vector of local optima w.r.t. falt
6: Fj  fobj(Sj) � F is a vector of scores
7: end for

8: nbmut 0

9: repeat

10: improve false

11: f 0
alt  mutateM,⇣(falt)

12: for j  1 to p do

13: randomly select s 2 ⌦
14: S0

j  hill climbing(⌦,N ,f 0
alt)

(s)

15: F 0
j  fobj(S

0
j)

16: end for

17: if z scoreT (F 0, F ) > zmin then � significant score of hypothesis LS(f 0
i) � LS(f)

18: falt  f 0
alt

19: improve  true

20: nbmut 0

21: else

22: nbmut nbmut + 1

23: end if

24: until improve or (nbmut = maxmut)

25: until not improve

26: return falt

Avg HC score

fobj fobj based falt based

NK256,1 0.691 0.695

NK256,6 0.725 0.719

NK256,12 0.705 0.702

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0  50  100  150  200  250  300  350  400
 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

F
itn

e
ss

z 
sc

o
re

Step
selected z score max fitness avg fitness

z min (p value 0.05)

fobj based hill climbing

Evolution of falt based hill climbing

Fig. 1. Performance of falt based hill climbers. Reference fobj are NK functions with N = 256 and K 2
{1, 6, 12}. falt are evolved NK functions with N = 256 and K = 1. The figure shows the evolution of the

falt score considering the first fobj function (N = 256,K = 1)
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1 Introduction

In this work, we investigate the use of a deep learning (DL) model as an alternative tool to tackle
the optimization tasks. Feature extraction is the main adopted concepts in MaNet that helps
the algorithm to skip irrelevant or partially relevant parameters and use those design variables
which contribute most to the overall performance in each iteration. The proposed MaNet adopts
a Convolutional Neural Network (CNN); which are regularized version of fully-connected neural
networks inspired from biological visual systems [1]. In MaNet, multiple convolution layers are
stacked which allows convolution layers to be applied to the output of the previous layer, results in
a hierarchically set of more decomposed features. Finally, a Dense layer (or fully-connected) with
linear activation function will be used to form the final solution vector. As it can be seen from
Fig. 1, MaNet has a very simple structure and can benefit from the advantage of having a fast
network training process1. Indeed, it has only 3,742 trainable parameters compared to state-of-the-
art models [2] which have millions or billions of parameters. This could facilitate the application
of MaNet for optimization tasks where a small amount of data (i.e., population) is available.

MaNet is composed of two similar architectures which are subjected to di↵erent optimization
procedures. The first one uses a batch size of one and the other uses 64 as its batch size. The batch
size is a hyperparameter of gradient descent that should be tuned for each optimization task. To
do so, MaNet integrates a reinforcement strategy inspired from SDCS [3]. Technically speaking,
SDCS is a simple metaheuristic algorithm which toggles continually between two snap and drift
modes to enhance reinforcement and stability. Based on this idea, MaNet introduces a self-adaptive
strategy to tune the batch size hyperparameter. More precisely, it is looking to see if the best cost
function stops improving after some number of epochs, and if so then it restarts the optimization
process and continues the search by the architecture which obtained a higher overall performance
so far. Finally, it is worth mentioning to note that the initial population will remain unchanged
during training the network and the algorithm will evolve a set of filters. The goal of MaNet then,
is to transfer the initial population on one end to evolved solutions on the other hand. This is one
of the main di↵erences between MaNet and evolutionary algorithms.
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Fig. 1: An overview of the proposed optimization architecture

1 Netron Visualizer is used to illustrate the model. The tools is available online at:
https://github.com/lutzroeder/netron
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1.1 Experimental results

We use a set of 9 benchmark functions given in CEC 2017 [20] to evaluate the performance of the
proposed algorithm2. The aforementioned problems are adopted on the GPU so as to be linked
with machine learning libraries. We used jSO [4] algorithm for the purpose of comparison which is
the second ranked algorithm in CEC2017 competitions for the single objective optimization track.
In order to make a fair comparison, all the experiment conditions are the same. In MaNet, we have
3 convolution layers which are sequentially connected to each other. In each layer, the number of
filters and the filter size are 6 and 3, respectively. The MaNet is a CNN model and needs a lot
of input data to be well trained and so the population size is fixed to n = 5, 000. Moreover, m is
considered to be 64 for all the problems. The MaNet will be optimized using the Adam algorithm [5].
The results in Table 1 confirm that MaNet has a competitive results in comparison with one of
the best designed algorithm for the CEC2017 problems. This is quite interesting because MaNet
doesn’t borrow any search strategy or component from the previously proposed methods for the
CEC problems including L-SHADE [6] and jSO.

Table 1: The obtained results by MaNet and jSO for 50 dimensional problems over 51 runs [7]. The results
of the Wilcoxon rank sum test are also reported at the 95% confidence level. The results for jSO are directly
taken from the original paper [4].

Function Algorithm Best Worst Mean Median Std. Sign

1
MaNet 3.67e + 02 2.06e + 03 1.39e + 03 1.46e + 03 3.71e + 02 �
jSO 0.00e + 00 0.00e + 00 0.00e+00 0.00e + 00 0.00e + 00

3
MaNet 9.80e + 04 1.42e + 05 1.23e + 05 1.25e + 05 8.88e + 03 �
jSO 0.00e + 00 0.00e + 00 0.00e+00 0.00e + 00 0.00e + 00

4
MaNet 3.10e � 06 1.53e � 03 8.22e-04 9.96e � 04 4.46e � 04

+
jSO 1.32e � 04 1.42e + 02 5.62e + 01 2.85e + 01 4.88e + 01

5
MaNet 1.99e + 00 1.09e + 01 6.15e+00 5.97e + 00 2.20e + 00

+
jSO 8.96e + 00 2.39e + 01 1.64e + 01 1.62e + 01 3.46e + 00

6
MaNet 0.00e + 00 0.00e + 00 0.00e+00 0.00e + 00 0.00e + 00

=
jSO 0.00e + 00 0.00e + 00 0.00e+00 0.00e + 00 0.00e + 00

7
MaNet 5.49e + 01 5.65e + 01 5.58e+01 5.59e + 01 3.62e � 01

+
jSO 5.75e + 01 7.42e + 01 6.65e + 01 6.66e + 01 3.47e + 00

8
MaNet 1.99e + 00 8.95e + 00 5.41e+00 5.97e + 00 1.99e + 00

+
jSO 9.95e + 00 2.41e + 01 1.70e + 01 1.70e + 01 3.14e + 00

9
MaNet 0.00e + 00 0.00e + 00 0.00e+00 0.00e + 00 0.00e + 00

=
jSO 0.00e + 00 0.00e + 00 0.00e+00 0.00e + 00 0.00e + 00

10
MaNet 1.86e + 04 1.88e + 04 1.87e + 04 1.87e + 04 6.25e + 01 �
jSO 2.40e + 03 3.79e + 03 3.14e+03 3.23e + 03 3.67e + 02
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1 Introduction

Nowadays, unmanned aerial vehicles (UAVs) are ideally suited for many real-world applications
such as reconnaissance and surveillance. One of the most concerning issues in this field is au-
tonomous path planning, which refers to planning an optimal path from the start location to a
desired destination while avoiding obstacles. Previous studies have presented a series of techniques
to tackle the aforementioned problem based on di↵erent necessities such as collision avoidance,
real-time planning, and safety maximization. They took hints from di↵erent research areas; like
mathematics for classical graph-based and probabilistic approaches [1], physics for potential field
algorithm [2], or computer science for artificial intelligence methods [3].

In recent years, general-purpose stochastic local search algorithms, also known as meta-heuristics,
received most of the research e↵ort in the intelligent UAVs community [3, 4]. They are important
approaches thanks to: a) their flexibility to solve large-scale complex problems, b) applying di↵er-
ent learning strategies to perform an e↵ective search towards the global optimum, c) permitting
to utilize kinematic constraints to the path, and d) employing for both single and multiple UAVs.
However, in practice, when the available computational resources are limited, they are not always
the best choice due to their slow rate of convergence. A majority of meta-heuristics use random
solutions to initialize their population. In some cases in UAV path planning problem, using random
initial solutions may result in not finding any feasible path after several iterations, especially in large
complex environments. Hence, the performance of these algorithms can be improved considerably
if initial solutions are feasible for such condition.

In this study, we show how incorporating some heuristic information into the meta-heuristics
can ease their usage for the aforementioned problem. Without loss of generality, the di↵erential
evolution (DE) and probabilistic roadmap (PRM) methods are considered as two baselines, where
the initial population of DE is fed by the PRM’s heuristic information. More precisely, the PRM
method as a classical approach is utilized to generate a set of feasible paths for setting up the
initial population of the DE algorithm to improve its convergence performance. The basic idea
behind PRM is to take admissible random points for constructing a graph of configuration space
that capture the underlying topology of the free space [5]. Thereafter, it uses a local planner in
order to link adjacent points in free space with edges, and then using the graph to plan pass
through the space. In this way, the algorithm converges faster to a global best path which can
reduce the computational time considerably. We suppose that the search space is known and
a grid-based map is used to represent the environment. The buildings in the environment with
di↵erent polygon shapes are denoted as static obstacles. In order to understand how these polygon
shapes occupy the grid cells, polygon triangulation method is used to decompose a polygon area
into a set of triangles with pairwise non intersecting interiors. Then, it checks whether a grid cell
lies inside a triangle or not. The e�ciency of the suggested algorithm is examined on a realistic
urban scenario. Evaluations exhibited desirable performance of the proposed algorithm in terms of
solution accuracy and convergence rate.

1.1 Experimental results

In order to assess the performance of the suggested method, a realistic urban scenario is consid-
ered. The selected environment is the map of university of Haute-Alsace which is located in a small
region of the Mulhouse city in France. The map file is extracted from OpenStreetMap, defined by
geographical coordinates in terms of latitude and longitude (see Fig. 1 (a-c)). The configuration
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parameters of the algorithm can be divided into two categories: environment and algorithm pa-
rameters which are listed in Table 1. These parameters have a great impact on the performance of
the algorithms. Hence, instead of using a trial-and-error approach to identify good values for them,
we applied irace software package [6] to get very high-performing algorithmic variants. Finally, we
performed a comparison between the presented algorithm, standard DE, and PRM method. All
the experiments were executed over 15 independent runs which are reported in Table 2. The results
are compared with each other in terms of the best, mean and standard deviation (S.D.) of the path
length and computational time, respectively. As it was expected, the hybrid approach considerably
performs better than the standard DE algorithm. Also, PRM outperforms the other competitors in
terms of computational time. However, the proposed algorithm is able to find paths with shortest
length in comparison with two other methods. Moreover, the obtained optimal path is displayed
in Fig. 1 (d). Generally, the suggested approach illustrated promising results in finding a superior
solution with proper accuracy and minimum computational time. Our future work mainly consists
in employing other algorithms that are more appropriate in the presence of moving obstacles, and
combinations of other motion planning with meta-heuristics in order to reduce the computational
time.

Table 1. The setting parameters

Environment DE algorithm PRM
Latitude = [47.7279242, 47.7332576] No.population in [1, 100] No.sample [100, 200, 300, 400]
Longitude= [7.3070263, 7.3156652] Crossover Rate in [0.1, 1] No.edges in [5, 10]
Grid space= (87 * 54) Scaling Factor in [0.1, 2] Max edge length in [10, 20, 30]
Start point= [x= 1, y= 1] No.strategy in [1, 5] -
Goal point= [x= 71, y= 47] Max Iteration = 250 -
Grid size= 1 Max Run = 15 Max Run = 15
No.obstacle= 49 - -

Fig. 1. A realistic urban scenario: (a) Google map picture, (b) Openstreetmap view, (c) Occupancy map
(d) The obtained best path with the proposed method

Table 2. The obtained results of algorithms over 15 independent runs

Path length Path length Computational time (s)
Algorithm Best mean ± S.D. mean ± S.D.

Proposed method 7.97e+01 1.03e+02 ± 9.72e+00 3.28e+01 ± 1.73e+00
DE 1.74e+02 2.01e+02 ± 1.83e+02 6.65e+01 ± 3.81e+00
PRM 8.30e+01 1.10e+02 ± 1.05e+01 1.04e+00 ± 8.63e-02

References

1. J. Li and X.-x. Sun, “A route planning’s method for unmanned aerial vehicles based on improved a-star
algorithm [j],” Acta Armamentarii, vol. 7, pp. 788–792, 2008.

2. Y.-b. Chen, G.-c. Luo, Y.-s. Mei, J.-q. Yu, and X.-l. Su, “Uav path planning using artificial potential
field method updated by optimal control theory,” International Journal of Systems Science, vol. 47,
no. 6, pp. 1407–1420, 2016.

3. Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-intelligence-based uav path planning,”
Knowledge-Based Systems, vol. 158, pp. 54–64, 2018.

4. S. Ghambari, J. Lepagnot, L. Jourdan, and L. Idoumghar, “A comparative study of meta-heuristic algo-
rithms for solving uav path planning,” in 2018 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 2018, pp. 174–181.

5. L. Kavraki, P. Svestka, and M. H. Overmars, Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Unknown Publisher, 1994, vol. 1994.

6. M. Lopez-Ibanez and T. Stutzle, “The automatic design of multiobjective ant colony optimization
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 6, pp. 861–875, 2012.



2 

An engine for configurations of simulated annealing algorithm 
İ. Sevim1 

1. Yıldız Teknik Üniversitesi, Beşiktaş Yerleşkesi, Barbaros Bulvarı, 34349 
isevim@yildiz.edu.tr 

Keywords: automated configuration, simulated annealing, artificial neural networks.  

1 Introduction 

Simulated Annealing (SA) is a metaheuristic algorithm mimics the annealing process of solid materials [1]. 
It is based on the idea of heating and slowly cooling a solid material to have a durable crystal structure [2]. 
By following this analogy, SA allows the deterioration of fitness function value to escape from local 
optimality during the search process. At a given iteration, SA always accepts an improving solution, where it 
accepts a deteriorating solution with probability. This probability is based on two stochastic component: (1) 
Cooling schedule, and, (2) initial temperature. Performance of an SA implementation depends on these two 
components under the assumption of fixed initial solution.     

In the literature, various studies discuss the correlation between features of problem instances and 
algorithmic performance [3,4]. Authors usually adopt the following approach for analysis: Run different 
algorithms for a set of instances of a particular problem and compare the results to choose the best 
algorithm. In this study, we analyse the same relationship following a different perspective: Instead of 
comparing different algorithms, compare the performances of different configurations of an algorithm on 
different instances of a particular problem. We work on an SA implementation for Travelling Salesman 
Problem (TSP) to illustrate the concept. The implementation follows the template of Al-Talbi [2]. Random 
datasets of TSP are obtained by using the approach given in [5]. 

In this work, we propose an artificial neural network (ANN) approach to learn the relationship between 
instance features and SA configurations (variations two stochastic components), and, algorithmic 
performance. We aim to work on adequately large number of TSP instances to train an ANN in an offline 
fashion and obtain an engine to predict the optimal configurations for a newly given TSP instance. 

2   Method and Data Structure 

Let I ={I1,I2,…,IN} be the set of TSP instances, F={F1,F2,…,FN} be the features of corresponding 
instances, and C={C1,C2,…,CM} be the set of configurations of SA. Then, the structure of the raw data is 
given in table 1 where f(N,M) is the fitness function value of the instance N with configuration M. 

Table 1. Structure of raw data 

# Instance Configuration Fitness Function Value 

1 I1 C1 f(1,1) 

2 I1 C2 f(1,2) 

… … … … 

M I1 CM f(1,M) 

… … … … 

… IN C1 f(N,1) 

… .. … … 

NM IN CM f(N,M) 
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After obtaining the fitness function values for the instance and configuration pairs given in table 1, we are 
ready to build the dataset to train the ANN. The structure of this data set is given in table 2. 

Table 2. Structure of the dataset to train the ANN 

# Instance Features Configuration Index 

1 I1 F1 t : f(1,t) = max(f(1,1),f(1,2),…,f(1,M)) 

2 I2 F2 t : f(2,t) = max(f(2,1),f(2,2),…,f(2,M)) 

… … … … 

N IN FN t : f(N,t) = max(f(N,1),f(N,2),…,f(N,M)) 

 

Once the entries of table 2 is on hand, the problem is boiled down to a classification problem: among all 
configuration combinations choose the best one. We choose to solve this classification problem with ANN. 

3   Conclusion 

In this study, we discuss that choosing the best configuration for the stochastic components of an SA 
implementation for TSP can be boiled down to a classification problem. By exploiting this idea, we propose 
an ANN to learn the relationship between instance features and configurations, and, algorithmic 
performance.   We also propose that the trained ANN can be used as an engine to predict the optimal 
configurations for a newly given TSP instance.  
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